StackStalk
  • Home
  • Java
    • Java Collection
    • Spring Boot Collection
  • Python
    • Python Collection
  • C++
    • C++ Collection
    • Progamming Problems
    • Algorithms
    • Data Structures
    • Design Patterns
  • General
    • Tips and Tricks

Tuesday, June 21, 2011

C++ Quick Select

 June 21, 2011     Algorithms     No comments   

The QuickSelect algorithm quickly finds the k-th smallest element of an unsorted array of n elements. This article provides a sample implementation of quick select algorithm.

Quick Select Introduction

  • The QuickSelect algorithm quickly finds the k-th smallest element of an unsorted array of n elements.
  • It is an O(n), worst-case linear time, selection algorithm. A typical selection by sorting method would need atleast O(n log n) time.
  • This algorithm is identical to quick sort but it does only a partial sort, since we already know which partition our desired element lies as the pivot is in final sorted position.

Quick select implementation in C++

#include <iostream>
using namespace std;

// A simple print function
void print(int *input)
{
    for ( int i = 0; i < 5; i++ )
        cout << input[i] << " ";
    cout << endl;
}

int partition(int* input, int p, int r)
{
    int pivot = input[r];
    
    while ( p < r )
    {
        while ( input[p] < pivot )
            p++;
        
        while ( input[r] > pivot )
            r--;
        
        if ( input[p] == input[r] )
            p++;
        else if ( p < r ) {
            int tmp = input[p];
            input[p] = input[r];
            input[r] = tmp;
        }
    }
    
    return r;
}

int quick_select(int* input, int p, int r, int k)
{
    if ( p == r ) return input[p];
    int j = partition(input, p, r);
    int length = j - p + 1;
    if ( length == k ) return input[j];
    else if ( k < length ) return quick_select(input, p, j - 1, k);
    else  return quick_select(input, j + 1, r, k - length);
}

int main()
{
    int A1[] = { 100, 400, 300, 500, 200 };
    cout << "1st order element " << quick_select(A1, 0, 4, 1) << endl;
    int A2[] = { 100, 400, 300, 500, 200 };
    cout << "2nd order element " << quick_select(A2, 0, 4, 2) << endl;
    int A3[] = { 100, 400, 300, 500, 200 };
    cout << "3rd order element " << quick_select(A3, 0, 4, 3) << endl;
    int A4[] = { 100, 400, 300, 500, 200 };
    cout << "4th order element " << quick_select(A4, 0, 4, 4) << endl;
    int A5[] = { 100, 400, 300, 500, 200 };
    cout << "5th order element " << quick_select(A5, 0, 4, 5) << endl;
}
OUTPUT:-
1st order element 100
2nd order element 200
3rd order element 300
4th order element 400
5th order element 500
Email ThisBlogThis!Share to XShare to Facebook
Newer Post Older Post Home

0 comments:

Post a Comment

Follow @StackStalk
Get new posts by email:
Powered by follow.it

Popular Posts

  • Python FastAPI file upload and download
    In this article, we will look at an example of how to implement a file upload and download API in a Python FastAPI microservice. Example bel...
  • Avro Producer and Consumer with Python using Confluent Kafka
    In this article, we will understand Avro a popular data serialization format in streaming data applications and develop a simple Avro Produc...
  • Monitor Spring Boot App with Micrometer and Prometheus
    Modern distributed applications typically have multiple microservices working together. Ability to monitor and manage aspects like health, m...
  • Server-Sent Events with Spring WebFlux
    In this article we will review the concepts of server-sent events and work on an example using WebFlux. Before getting into this article it ...
  • Accessing the Kubernetes API
    In this article, we will explore the steps required to access the Kubernetes API and overcome common challenges. All operations and communic...
  • Python FastAPI microservice with Okta and OPA
    Authentication (AuthN) and Authorization (AuthZ) is a common challenge when developing microservices. In this article, we will explore how t...
  • Scheduling jobs in Python
    When developing applications and microservices we run into scenarios where there is a need to run scheduled tasks. Examples include performi...
  • Using Tekton to deploy KNative services
    Tekton is a popular open-source framework for building continuous delivery pipelines. Tekton provides a declarative way to define pipelines ...

Copyright © StackStalk